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DECISION MAKING UNDER UNCERTAINTYDECISION MAKING UNDER UNCERTAINTY

I ti l blIn many operational problems: 

• Flood warning; decision makers must take important
d i i d th t i t f• Flood emergency management;

• Reservoir management;
• Etc.

decisions under the uncertainty of
future events.

According to the Decision theory, in order to take a rational decision it is
necessary to:
1 Define an Utility Function in accordance with the Decision Maker1. Define an Utility Function in accordance with the Decision Maker
2. Quantify the probability density of the future event
3. Maximize the expected value of the Utility Function
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PREDICTIVE UNCERTAINTY: DEFINITIONPREDICTIVE UNCERTAINTY: DEFINITION

THE DEFINITION OF PREDICTIVE UNCERTAINTY

Predictive Uncertainty can be defined as the probability of occurrence of
a future value of a predictand (such as water level, discharge or water
volume) conditional on all the information that can be obtained on thevolume) conditional on all the information that can be obtained on the
future value, which is typically embodied in one or more meteorological,
hydrological and hydraulic model forecasts.

Predictive Uncertainty must be quantified in terms of probability
di t ib tidistribution.

If the available information is a model forecast, Predictive Uncertainty
can be written and here will be called as:
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MODEL MODEL CONDITIONAL PROCESSOR (MCP): CONDITIONAL PROCESSOR (MCP): METHODOLOGY DESCRIPTIONMETHODOLOGY DESCRIPTION
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MCP: PROBABILITY TO EXCEED A THRESHOLDMCP: PROBABILITY TO EXCEED A THRESHOLD

The knowledge of the future event probability distribution allows to easilyThe knowledge of the future event probability distribution allows to easily
extrapolate the probability to exceed a threshold value, such as an alert level.

This is an important information when dealing with the decision about givingThis is an important information when dealing with the decision about giving
or not an alarm in emergency managing.

I b di l d f h P di i U i

*ˆˆ

It can be directly computed from the Predictive Uncertainty,
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a

 
yyayP






*

* )ˆˆ|( Image of the 
observed 
values

a
a

 dyyyyf
a
  *ˆˆ

Image of the 
forecasted values

   df


 *ˆˆ

European Geosciences Union General Assembly 2010, Vienna, May 2010 

 a



PROBLEM:The estimate of the correlation coefficient not always well

MCP: IMPROVEMENTMCP: IMPROVEMENT

PROBLEM:The estimate of the correlation coefficient not always well
represents the high flow state, which is due to the different
behaviour of the model in reproducing the low and high flows and to
th NQT li it bi d ith th hi h f f d t ithe NQT non-linearity combined with the higher frequency of data in
low flow state than in high flow state.

PROPOSED SOLUTION: in the Normal Space data are divided in twoPROPOSED SOLUTION: in the Normal Space, data are divided in two
samples and each one is supposed to belong to a different
Truncated Normal Distribution. Hence, two Joint Truncated
N l di t ib ti id tifi d th b i f th l
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Normal distributions are identified on the basis of the samples
mean, variance and covariance.



MCP: MULTIMCP: MULTI‐‐VARIATE APPROACHVARIATE APPROACH

Usually, a real time flood forecasting system is composed by more than one
model chain, different from each others for structure and results.

HOW TO DEAL WITH THESE 
FORECASTS?FORECASTS?

WHICH WEIGHT CAN BE 
ASSIGNED TO EACH ONE?ASSIGNED TO EACH ONE? 
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C id i th t d l t b d fi d b tt th th i

MCP: MULTIMCP: MULTI‐‐VARIATE APPROACHVARIATE APPROACH

Considering that a model cannot be defined better than another one in
absolute terms, the MCP tries to answer these questions combining all the
forecasts through a multivariate bayesian analysis.

P di ti U t i t i d fi d th b bilit f th l f t

European Geosciences Union General Assembly 2010, Vienna, May 2010 

Predictive Uncertainty is now defined as the probability of the real future
event conditioned to the forecasts of all the deterministic models



G li i th i d if N f t il bl th lti

MCP: MULTIMCP: MULTI‐‐VARIATE APPROACHVARIATE APPROACH

Generalizing the previous procedure, if N forecasts are available, the multi-
Normal space is composed by N+1 variables; each one is distributed as a
Standard Normal and the joint distribution is a Standard Normal (N+1)-
Variate,
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Predictive Uncertainty hasPredictive Uncertainty has 
mean and variance:

European Geosciences Union General Assembly 2010, Vienna, May 2010 



MCP: APPLICATIONMCP: APPLICATION

BARON FORK RIVER AT ELDON OK USABARON FORK RIVER AT ELDON, OK, USA
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Gridded hourly precipitation and Observed hourly discharge

Available data, provided by the NOAA’s National Weather Service, within the 
DMIP 2 Project:
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Gridded hourly precipitation and
temperature data

Observed hourly discharge 
at Eldon



MCP: APPLICATIONMCP: APPLICATION

The aim of the application was to answer the following questions :

1. Does the MCP assess the Predictive Uncertainty?

2. Does the MCP improve the deterministic forecasts?

3. Does the use of the truncated joint distributions improve the MCP 
behaviour in reproducing flood event?

4. Does the Multivariate approach reduce the Predictive Uncertainty? 

European Geosciences Union General Assembly 2010, Vienna, May 2010 



MCP: APPLICATIONMCP: APPLICATION

Observed threshold exceeding
Exceeding Probability

1 MODEL:
TOPKAPI

Observed Discharge

5% 95% Quantiles

Model forecast (T0+6h) 
PU Expected Value

Observed Discharge

5%, 95% Quantiles
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MCP: APPLICATIONMCP: APPLICATION

Observed threshold exceeding
Exceeding Probability 

1 MODEL:
TETIS

Observed Discharge

5% 95% Quantiles

Model forecast  (T0+6h)
PU Expected Value

Observed Discharge

5%, 95% Quantiles
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MCP: APPLICATIONMCP: APPLICATION

Observed threshold exceeding
Exceeding Probability 

1 MODEL:
ANN

Observed Discharge

5% 95% Quantiles

Model forecast  (T0+6h)
PU Expected Value

Observed Discharge

5%, 95% Quantiles
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MCP: APPLICATIONMCP: APPLICATION
Observed threshold 
exceedingexceeding
2 MODELS Exceeding 
Probability

3 MODELS Exceeding  Probability 

2 MODELS:
TETIS + TOPKAPI

Observed Discharge

VS
5%, 95% Quantiles
2 MODELS PU Expected Value
Observed Discharge

VS
5%, 95% Quantiles
3 MODELS PU Expected Value

3 MODELS:
TETIS + TOPKAPI 

+ ANN
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MCP: APPLICATIONMCP: APPLICATION
Observed threshold 
exceedingexceeding
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Probability
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MCP: APPLICATIONMCP: APPLICATION
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MCP: APPLICATIONMCP: APPLICATION

WITH the Truncated Joint DistributionERROR STANDARD DEVIATION
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1) The choice of the threshold using the Joint Truncated Distributions.
FUTURE DEVELOPMENTSFUTURE DEVELOPMENTS

1) The choice of the threshold using the Joint Truncated Distributions.

Is it possible to find an objective rule, related to
the forecast cdf gradient, to identify thisg y
threshold?

Can the use of a Quantile Regression lead to aCan the use of a Quantile Regression lead to a
more realistic uncertainty assessment?

2) A good model fit of the marginal cdf tails is very important:

For which probabilities should tails be used?

Which is the best curve?Which is the best curve?

Would be better the use of tails or to identify a probability model for the
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Even if improvements are still required the presented application of the

CONCLUSIONSCONCLUSIONS

Even if improvements are still required, the presented application of the
MCP shows that this methodology:

ll t ti t th P di ti U t i t i i l t ti l• allows to estimate the Predictive Uncertainty, requiring low computational
costs;

• allows to combine different models forecast, reconciling physically based
and data driven models gaining from the benefits of both approaches.

Furthermore,

• the use of the truncated distributions allows to better reproduce the floodthe use of the truncated distributions allows to better reproduce the flood
events;

• the assessment of the probability to exceed an alert level allows to deal in• the assessment of the probability to exceed an alert level allows to deal in
probabilistic terms with the emergency management and it can lead to
identify probability thresholds instead of the deterministic ones commonly
used
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